Supervised pseudo self-evolving cerebellar algorithm for generating fuzzy membership functions
The proper generation of fuzzy membership function is of fundamental importance in fuzzy applications. The effectiveness of the membership functions in pattern classifications can be objectively measured in terms of interpretability and classification accuracy in the conformity of the decision bound...
Saved in:
Main Authors: | Ang, K. K., Quek, Chai |
---|---|
其他作者: | School of Computer Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/96048 http://hdl.handle.net/10220/11135 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Type-2 fuzzy elliptic membership functions for modeling uncertainty
由: Kayacan, Erdal, et al.
出版: (2020) -
Traffic prediction using a Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) fuzzy neural network
由: Nguyen, Ngoc Nam, et al.
出版: (2013) -
Structural evolving appetitive reward-based pseudo-outer-product fuzzy neural network SE-ARPOP-CRI(S)
由: Do, The Anh
出版: (2012) -
Self-evolving neural fuzzy system with application in portfolio management
由: Yap, Jia Le
出版: (2023) -
Self evolving Takagi-Sugeno-Kang fuzzy neural network.
由: Nguyen Ngoc Nam
出版: (2012)