Robust watermarking of compressed and encrypted JPEG2000 images
Digital asset management systems (DAMS) generally handle media data in a compressed and encrypted form. It is sometimes necessary to watermark these compressed encrypted media items in the compressed-encrypted domain itself for tamper detection or ownership declaration or copyright management purpos...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96077 http://hdl.handle.net/10220/11475 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Digital asset management systems (DAMS) generally handle media data in a compressed and encrypted form. It is sometimes necessary to watermark these compressed encrypted media items in the compressed-encrypted domain itself for tamper detection or ownership declaration or copyright management purposes. It is a challenge to watermark these compressed encrypted streams as the compression process would have packed the information of raw media into a low number of bits and encryption would have randomized the compressed bit stream. Attempting to watermark such a randomized bit stream can cause a dramatic degradation of the media quality. Thus it is necessary to choose an encryption scheme that is both secure and will allow watermarking in a predictable manner in the compressed encrypted domain. In this paper, we propose a robust watermarking algorithm to watermark JPEG2000 compressed and encrypted images. The encryption algorithm we propose to use is a stream cipher. While the proposed technique embeds watermark in the compressed-encrypted domain, the extraction of watermark can be done in the decrypted domain. We investigate in detail the embedding capacity, robustness, perceptual quality and security of the proposed algorithm, using these watermarking schemes: Spread Spectrum (SS), Scalar Costa Scheme Quantization Index Modulation (SCS-QIM), and Rational Dither Modulation (RDM). |
---|