Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction

The mesoporous Au-TiO2 nanocomposites with different Au concentrations were prepared via a co-polymer assisted sol-gel method. The structures have been characterized by powder X-Ray diffraction, N2 adsorption-desorption isotherms, diffuse reflectance UV-Vis spectroscopy, X-ray photoemission spectros...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang, Jun, Cao, Shao-Wen, Wang, Zheng, Mohammad Mehdi Shahjamali, Loo, Say Chye Joachim, Barberand, James, Xue, Can
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/96088
http://hdl.handle.net/10220/9989
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The mesoporous Au-TiO2 nanocomposites with different Au concentrations were prepared via a co-polymer assisted sol-gel method. The structures have been characterized by powder X-Ray diffraction, N2 adsorption-desorption isotherms, diffuse reflectance UV-Vis spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy. Most generated Au nanoparticles were embedded in the mesoporous TiO2 matrix. The prepared Au-TiO2 nanocomposites exhibit remarkable visible-light activity for H2 evolution from photocatalytic water reduction in the presence of ascorbic acid as the electron donor. By comparing with Pt-TiO2 samples, we found that the visible-light activity of the Au-TiO2 nanocomposites could be partially contributed by the defects/impurity states in the TiO2 matrix, while the gold surface plasmons could significantly enhance the weak visible-light excitation of TiO2 matrix. In addition, further studies by controlling irradiation wavelengths suggest that some plasmon-excited electrons could transfer from Au nanoparticles to the contacting TiO2 to reduce water for H2 generation. We believe that these Au-TiO2 nanocomposites as well as the mechanistic studies would have considerable impact on future development of metal-semiconductor hybrid photocatalysts for efficient solar hydrogen production.