On the security of index coding with side information

Security aspects of the index coding with side information (ICSI) problem are investigated. Building on the results of Bar-Yossef (2006), the properties of linear index codes are further explored. The notion of weak security, considered by Bhattad and Narayanan (2005) in the context of network codin...

Full description

Saved in:
Bibliographic Details
Main Authors: Dau, Son Hoang, Skachek, Vitaly, Chee, Yeow Meng
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/96153
http://hdl.handle.net/10220/11387
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Security aspects of the index coding with side information (ICSI) problem are investigated. Building on the results of Bar-Yossef (2006), the properties of linear index codes are further explored. The notion of weak security, considered by Bhattad and Narayanan (2005) in the context of network coding, is generalized to block security. It is shown that the linear index code based on a matrix L, whose column space code C(L) has length n, minimum distance d , and dual distance d⊥ , is (d-1-t) -block secure (and hence also weakly secure) if the adversary knows in advance t ≤ d-2 messages, and is completely insecure if the adversary knows in advance more than n - d⊥ messages. Strong security is examined under the conditions that the adversary: 1) possesses t messages in advance; 2) eavesdrops at most μ transmissions; 3) corrupts at most δ transmissions. We prove that for sufficiently large q , an optimal linear index code which is strongly secure against such an adversary has length κq+μ+2δ . Here, κq is a generalization of the min-rank over Fq of the side information graph for the ICSI problem in its original formulation in the work of Bar-Yossef et al.