ECG signal generation and heart rate variability signal extraction : signal processing, features detection, and their correlation with cardiac diseases
The sum total of millions of cardiac cell depolarization potentials can be represented by an electrocardiogram (ECG). Inspection of the P–QRS–T wave allows for the identification of the cardiac bioelectrical health and disorders of a subject. In order to extract the important features of the ECG sig...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96237 http://hdl.handle.net/10220/11490 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The sum total of millions of cardiac cell depolarization potentials can be represented by an electrocardiogram (ECG). Inspection of the P–QRS–T wave allows for the identification of the cardiac bioelectrical health and disorders of a subject. In order to extract the important features of the ECG signal, the detection of the P wave, QRS complex, and ST segment is essential. Therefore, abnormalities of these ECG parameters are associated with cardiac disorders.
In this work, an introduction to the genesis of the ECG is given, followed by a depiction of some abnormal ECG patterns and rhythms (associated with P–QRS–T wave parameters), which have come to be empirically correlated with cardiac disorders (such as sinus bradycardia, premature ventricular contraction, bundle-branch block, atrial flutter, and atrial fibrillation). We employed algorithms for ECG pattern analysis, for the accurate detection of the P wave, QRS complex, and ST segment of the ECG signal. We then catagorited and tabulated these cardiac disorders in terms of heart rate, PR interval, QRS width, and P wave amplitude.
Finally, we discussed the characteristics and different methods (and their measures) of analyting the heart rate variability (HRV) signal, derived from the ECG waveform. The HRV signals are characterised in terms of these measures, then fed into classifiers for grouping into categories (for normal subjects and for disorders such as cardiac disorders and diabetes) for carrying out diagnosis. |
---|