Closing the circle : is it feasible to rehabilitate reefs with sexually propagated corals?

Sexual propagation of corals specifically for reef rehabilitation remains largely experimental. In this study, we refined low technology culture and transplantation approaches and assessed the role of colony size and age, at time of transfer from nursery to reef, on subsequent survival. Larvae from...

Full description

Saved in:
Bibliographic Details
Main Authors: Guest, J. R., Baria, M. V., Gomez, E. D., Heyward, A. J., Edwards, A. J.
Other Authors: Nanyang Environment and Water Research Institute
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/96291
http://hdl.handle.net/10220/25595
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Sexual propagation of corals specifically for reef rehabilitation remains largely experimental. In this study, we refined low technology culture and transplantation approaches and assessed the role of colony size and age, at time of transfer from nursery to reef, on subsequent survival. Larvae from Acropora millepora were reared from gametes and settled on engineered substrates, called coral plug-ins, that were designed to simplify transplantation to areas of degraded reef. Plug-ins, with laboratory spawned and settled coral recruits attached, were maintained in nurseries until they were at least 7 months old before being transplanted to replicate coral limestone outcrops within a marine protected area until they were 31 months old. Survival rates of transplanted corals that remained at the protected in situ nursery the longest were 3.9–5.6 times higher than corals transplanted to the reef earlier, demonstrating that an intermediate ocean nursery stage is critical in the sexual propagation of corals for reef rehabilitation. 3 years post-settlement, colonies were reproductively mature, making this one of few published studies to date to rear a broadcasting scleractinian from eggs to spawning adults. While our data show that it is technically feasible to transplant sexually propagated corals and rear them until maturity, producing a single 2.5-year-old coral on the reef cost at least US$60. ‘What if’ scenarios indicate that the cost per transplantable coral could be reduced by almost 80 %, nevertheless, it is likely that the high cost per coral using sexual propagation methods would constrain delivery of new corals to relatively small scales in many countries with coral reefs.