Shimura subgroups and degeneracy maps

For M ≥ 1 an integer and M′ a positive divisor of M, let φ: J0(M′)τ → J0(M) be the map defined by all the degeneracy maps, where τ is the number of positive divisors of M/M′. We determine the kernel of φ for certain M and M′, as well as relate the pre-image of the Shimura subgroup Σ(M) under φ to th...

Full description

Saved in:
Bibliographic Details
Main Author: Ling, San
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/96298
http://hdl.handle.net/10220/9860
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:For M ≥ 1 an integer and M′ a positive divisor of M, let φ: J0(M′)τ → J0(M) be the map defined by all the degeneracy maps, where τ is the number of positive divisors of M/M′. We determine the kernel of φ for certain M and M′, as well as relate the pre-image of the Shimura subgroup Σ(M) under φ to the group Σ(M′)τ. We also study the restriction of degeneracy maps to Shimura subgroups.