Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets
Experiments and simulations to promote or attenuate the “coffee-ring effect” for pinned sessile nanofluid droplets are presented. The addition of surfactant inside a water suspension of aluminum oxide nanoparticles results in coffee-ring formation after the pinned sessile droplets are fully dried on...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96312 http://hdl.handle.net/10220/10214 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Experiments and simulations to promote or attenuate the “coffee-ring effect” for pinned sessile nanofluid droplets are presented. The addition of surfactant inside a water suspension of aluminum oxide nanoparticles results in coffee-ring formation after the pinned sessile droplets are fully dried on a substrate, while droplets of the same suspension without the surfactant produce a fine uniform coverage. A mathematical model based on diffusion-limited cluster-cluster aggregation has been developed to explain the observed difference in the experiments. The simulations show that the particle sticking probability is a crucial factor on the morphology of finally dried structures. |
---|