On uncertainty principle of the local polynomial Fourier transform

In this article, a comprehensive study on uncertainty principle of the local polynomial Fourier transform (LPFT) is presented. It shows that the uncertainty product of the LPFT of an arbitrary order is related to the parameters of the signal and the window function, in addition to the errors of esti...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Xiumei, Bi, Guoan, Li, Shenghong
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/96329
http://hdl.handle.net/10220/10233
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this article, a comprehensive study on uncertainty principle of the local polynomial Fourier transform (LPFT) is presented. It shows that the uncertainty product of the LPFT of an arbitrary order is related to the parameters of the signal and the window function, in addition to the errors of estimating the polynomial coefficients. Important factors that affect resolutions of signal representation, such as the window width, the length of overlap between signal segments, order mismatch and estimation errors of polynomial coefficients, are discussed. The effects of minimizing computational complexities on signal representation by reducing the order of the transform and the overlap length between signal segments are also examined. In terms of the signal concentration, comparisons among the short-time Fourier transform, the Wigner-Ville distribution and the second order LPFT are presented. The LPFT is shown to be an excellent candidate providing better representations for time-varying signals.