Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming
It has long been conjectured that the crossing numbers of the complete bipartite graph $K_{m,n}$ and of the complete graph $K_n$ equal $Z(m,n):=\bigl\lfloor\frac{n}{2}\bigr\rfloor \bigl\lfloor\frac{n-1}{2}\bigr\rfloor \bigl\lfloor\frac{m}{2}\bigr\rfloor \bigl\lfloor\frac{m-1}{2}\bigr\rfloor$ and $Z(...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/96333 http://hdl.handle.net/10220/10215 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-96333 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-963332023-02-28T19:40:07Z Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming Klerk, E. de. Pasechnik, Dmitrii V. School of Physical and Mathematical Sciences It has long been conjectured that the crossing numbers of the complete bipartite graph $K_{m,n}$ and of the complete graph $K_n$ equal $Z(m,n):=\bigl\lfloor\frac{n}{2}\bigr\rfloor \bigl\lfloor\frac{n-1}{2}\bigr\rfloor \bigl\lfloor\frac{m}{2}\bigr\rfloor \bigl\lfloor\frac{m-1}{2}\bigr\rfloor$ and $Z(n):=\frac{1}{4} \bigl\lfloor\frac{n}{2}\bigr\rfloor \bigl\lfloor\frac{n-1}{2}\bigr\rfloor \bigl\lfloor\frac{n-2}{2}\bigr\rfloor \bigl\lfloor\frac{n-3}{2}\bigr\rfloor$, respectively. In a $2$-page drawing of a graph, the vertices are drawn on a straight line (the spine), and each edge is contained in one of the half-planes of the spine. The $2$-page crossing number $\nu_2(G)$ of a graph $G$ is the minimum number of crossings in a $2$-page drawing of $G$. Somewhat surprisingly, there are $2$-page drawings of $K_{m,n}$ (respectively, $K_n$) with exactly $Z(m,n)$ (respectively, $Z(n)$) crossings, thus yielding the conjectures (I) $\nu_2(K_{m,n}) \stackrel{?}{=} Z(m,n)$ and (II) $\nu_2(K_n) \stackrel{?}{=} Z(n)$. It is known that (I) holds for $\min\{m,n\} \le 6$, and that (II) holds for $n \le 14$. In this paper we prove that (I) holds asymptotically (that is, $\lim_{n\to\infty} \nu_2(K_{m,n})/Z(m,n) =1$) for $m=7$ and $8$. We also prove (II) for $15 \le n \le 18$ and $n \in \{20,24\}$, and establish the asymptotic estimate $\lim_{n\to\infty} \nu_2(K_{n})/Z(n) \ge 0.9253.$ The previous best-known lower bound involved the constant $0.8594$. Published version 2013-06-12T01:55:50Z 2019-12-06T19:29:09Z 2013-06-12T01:55:50Z 2019-12-06T19:29:09Z 2012 2012 Journal Article Klerk, E. d. & Pasechnik, D. V. (2012). Improved Lower Bounds for the 2-Page Crossing Numbers of Km,n and Kn via Semidefinite Programming. SIAM Journal on Optimization, 22(2), 581-595. 1052-6234 https://hdl.handle.net/10356/96333 http://hdl.handle.net/10220/10215 10.1137/110852206 en SIAM journal on optimization © 2012 Society for Industrial and Applied Mathematics. This paper was published in SIAM Journal on Optimization and is made available as an electronic reprint (preprint) with permission of Society for Industrial and Applied Mathematics. The paper can be found at the following official DOI: [http://dx.doi.org/10.1137/110852206]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
description |
It has long been conjectured that the crossing numbers of the complete bipartite graph $K_{m,n}$ and of the complete graph $K_n$ equal $Z(m,n):=\bigl\lfloor\frac{n}{2}\bigr\rfloor \bigl\lfloor\frac{n-1}{2}\bigr\rfloor \bigl\lfloor\frac{m}{2}\bigr\rfloor \bigl\lfloor\frac{m-1}{2}\bigr\rfloor$ and $Z(n):=\frac{1}{4} \bigl\lfloor\frac{n}{2}\bigr\rfloor \bigl\lfloor\frac{n-1}{2}\bigr\rfloor \bigl\lfloor\frac{n-2}{2}\bigr\rfloor \bigl\lfloor\frac{n-3}{2}\bigr\rfloor$, respectively. In a $2$-page drawing of a graph, the vertices are drawn on a straight line (the spine), and each edge is contained in one of the half-planes of the spine. The $2$-page crossing number $\nu_2(G)$ of a graph $G$ is the minimum number of crossings in a $2$-page drawing of $G$. Somewhat surprisingly, there are $2$-page drawings of $K_{m,n}$ (respectively, $K_n$) with exactly $Z(m,n)$ (respectively, $Z(n)$) crossings, thus yielding the conjectures (I) $\nu_2(K_{m,n}) \stackrel{?}{=} Z(m,n)$ and (II) $\nu_2(K_n) \stackrel{?}{=} Z(n)$. It is known that (I) holds for $\min\{m,n\} \le 6$, and that (II) holds for $n \le 14$. In this paper we prove that (I) holds asymptotically (that is, $\lim_{n\to\infty} \nu_2(K_{m,n})/Z(m,n) =1$) for $m=7$ and $8$. We also prove (II) for $15 \le n \le 18$ and $n \in \{20,24\}$, and establish the asymptotic estimate $\lim_{n\to\infty} \nu_2(K_{n})/Z(n) \ge 0.9253.$ The previous best-known lower bound involved the constant $0.8594$. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Klerk, E. de. Pasechnik, Dmitrii V. |
format |
Article |
author |
Klerk, E. de. Pasechnik, Dmitrii V. |
spellingShingle |
Klerk, E. de. Pasechnik, Dmitrii V. Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming |
author_sort |
Klerk, E. de. |
title |
Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming |
title_short |
Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming |
title_full |
Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming |
title_fullStr |
Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming |
title_full_unstemmed |
Improved lower bounds for the 2-page crossing numbers of Km,n and Kn via semidefinite programming |
title_sort |
improved lower bounds for the 2-page crossing numbers of km,n and kn via semidefinite programming |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/96333 http://hdl.handle.net/10220/10215 |
_version_ |
1759854631562772480 |