Functionalization of SnO2 photoanode through Mg-doping and TiO2-coating to synergically boost dye-sensitized solar cell performance
Mg-doped SnO2 with an ultrathin TiO2 coating layer was successfully synthesized through a facile nanoengineering art. Mg-doping and TiO2-coating constructed functionally multi-interfaced SnO2 photoanode for blocking charge recombination and enhancing charge transfer in dye-sensitized solar cells (DS...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/96369 http://hdl.handle.net/10220/10256 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Mg-doped SnO2 with an ultrathin TiO2 coating layer was successfully synthesized through a facile nanoengineering art. Mg-doping and TiO2-coating constructed functionally multi-interfaced SnO2 photoanode for blocking charge recombination and enhancing charge transfer in dye-sensitized solar cells (DSC). The designed nanostructure might play a synergistic effect on the reducing recombination and prolonging the lifetime in DSC device. Consequently, a maximum power conversion efficiency of 4.15% was obtained for solar cells fabricated with the SnO2-based photoelectrode, exhibiting beyond 5-fold improvement in comparison with pure SnO2 nanomterials photoelectrode DSC (0.85%). |
---|