Carbocatalysis : the state of “metal-free” catalysis
The rise in global demand for crucial chemical compounds has driven immense research in the fundamental science of catalysis. Graphene and its derivatives (chemically modified graphene, CMGs) have recently emerged as a new class of heterogeneous catalyst that promises economically viable and greener...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96385 http://hdl.handle.net/10220/38505 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The rise in global demand for crucial chemical compounds has driven immense research in the fundamental science of catalysis. Graphene and its derivatives (chemically modified graphene, CMGs) have recently emerged as a new class of heterogeneous catalyst that promises economically viable and greener routes to these compounds. Although CMGs possess unique catalytic properties, the actual active sites are often points of discussion. Current minimal understanding on the possible effects of metallic impurities on the electrocatalytic performances of these CMGs calls forth the need to raise awareness on possible metallic impurities misrepresenting the actual chemical catalytic performances of the CMGs. This Minireview highlights the latest advances in the application of CMGs as catalysts, with an emphasis on the possible effects of metallic impurities on CMG catalysis. |
---|