On the algebraic structure of quasi-cyclic codes IV : repeated roots
A trace formula for quasi-cyclic codes over rings of characteristic not coprime with the co-index is derived. The main working tool is the Generalized Discrete Fourier Transform (GDFT), which in turn relies on the Hasse derivative of polynomials. A characterization of Type II self-dual quasi-cyclic...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96413 http://hdl.handle.net/10220/9841 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A trace formula for quasi-cyclic codes over rings of characteristic not coprime with the co-index is derived. The main working tool is the Generalized Discrete Fourier Transform (GDFT), which in turn relies on the Hasse derivative of polynomials. A characterization of Type II self-dual quasi-cyclic codes of singly even co-index over finite fields of even characteristic follows. Implications for generator theory are shown. Explicit expressions for the combinatorial duocubic, duoquintic and duoseptic constructions in characteristic two over finite fields are given. |
---|