On the algebraic structure of quasi-cyclic codes I : finite fields
A new algebraic approach to quasi-cyclic codes is introduced. The key idea is to regard a quasi-cyclic code over a field as a linear code over an auxiliary ring. By the use of the Chinese remainder theorem (CRT), or of the discrete Fourier transform (DFT), that ring can be decomposed into a direct p...
Saved in:
Main Authors: | Ling, San, Sole, Patrick |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/96416 http://hdl.handle.net/10220/9827 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
On the algebraic structure of quasi-cyclic codes III : generator theory
由: Ling, San, et al.
出版: (2013) -
On the algebraic structure of quasi-cyclic codes II : chain rings
由: Ling, San, et al.
出版: (2013) -
On the algebraic structure of quasi-cyclic codes IV : repeated roots
由: Ling, San, et al.
出版: (2013) -
New binary linear codes from algebraic curves
由: Leung, Ka Hin, et al.
出版: (2013) -
Maximum distance separable symbol-pair codes
由: Chee, Yeow Meng, et al.
出版: (2013)