On the variance of average distance of subsets in the Hamming space
Let V be a finite set with q distinct elements. For a subset C of V n, denote var(C) the variance of the average Hamming distance of C. Let T (n,M; q) and R(n,M; q) denote the minimum and maximum variance of the average Hamming distance of subsets of V n with cardinality M, respectively. In this pa...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96425 http://hdl.handle.net/10220/9840 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Let V be a finite set with q distinct elements. For a subset C of V n, denote var(C) the variance of the average Hamming
distance of C. Let T (n,M; q) and R(n,M; q) denote the minimum and maximum variance of the average Hamming distance of subsets of V n with cardinality M, respectively. In this paper, we study T (n,M; q) and R(n,M; q) for general q. Using methods from coding theory, we derive upper and lower bounds on var(C), which generalize and unify the bounds for the case q = 2. These bounds enable us to determine the exact value for T (n,M; q) and R(n,M; q) in several cases. |
---|