On the variance of average distance of subsets in the Hamming space
Let V be a finite set with q distinct elements. For a subset C of V n, denote var(C) the variance of the average Hamming distance of C. Let T (n,M; q) and R(n,M; q) denote the minimum and maximum variance of the average Hamming distance of subsets of V n with cardinality M, respectively. In this pa...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/96425 http://hdl.handle.net/10220/9840 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Let V be a finite set with q distinct elements. For a subset C of V n, denote var(C) the variance of the average Hamming
distance of C. Let T (n,M; q) and R(n,M; q) denote the minimum and maximum variance of the average Hamming distance of subsets of V n with cardinality M, respectively. In this paper, we study T (n,M; q) and R(n,M; q) for general q. Using methods from coding theory, we derive upper and lower bounds on var(C), which generalize and unify the bounds for the case q = 2. These bounds enable us to determine the exact value for T (n,M; q) and R(n,M; q) in several cases. |
---|