Preparation of supercapacitor electrodes through selection of graphene surface functionalities
In order to investigate the effect of graphene surface chemistry on the electrochemical performance of graphene/polyaniline composites as supercapacitor electrodes, graphene oxide (G-O), chemically reduced G-O (RG-O), nitrogen-doped RG-O (N-RG-O), and amine-modified RG-O (NH2-RG-O) were selected as...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/96484 http://hdl.handle.net/10220/10337 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-96484 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-964842020-03-07T12:34:42Z Preparation of supercapacitor electrodes through selection of graphene surface functionalities Lai, Linfei Yang, Huanping Wang, Liang Teh, Boon Kin Zhong, Jianqiang Chou, Harry Chen, Luwei Chen, Wei Shen, Zexiang Ruoff, Rodney S. Lin, Jianyi School of Physical and Mathematical Sciences In order to investigate the effect of graphene surface chemistry on the electrochemical performance of graphene/polyaniline composites as supercapacitor electrodes, graphene oxide (G-O), chemically reduced G-O (RG-O), nitrogen-doped RG-O (N-RG-O), and amine-modified RG-O (NH2-RG-O) were selected as carriers and loaded with about 9 wt % of polyaniline (PANi). The surface chemistry of these materials was analyzed by FTIR, NEXAFS, and XPS, and the type of surface chemistry was found to be important for growth of PANi that influences the magnitude of increase of specific capacitance. The NH2-RG-O/PANi composite exhibited the largest increase in capacitance with a value as high as 500 F g–1 and good cyclability with no loss of capacitance over 680 cycles, much better than that of RG-O/PANi, N-RG-O/PANi, and G-O/PANi when measured in a three-electrode system. A NH2-RG-O/PANi//N-RG-O supercapacitor cell has a capacitance of 79 F g–1, and the corresponding specific capacitance for NH2-RG-O/PANi is 395 F g–1. This research highlights the importance of introducing −NH2 to RG-O to achieve highly stable cycling performance and high capacitance values. 2013-06-13T06:13:57Z 2019-12-06T19:31:20Z 2013-06-13T06:13:57Z 2019-12-06T19:31:20Z 2012 2012 Journal Article Lai, L., Yang, H., Wang, L., Teh, B. K., Zhong, J., Chou, H., et al. (2012). Preparation of Supercapacitor Electrodes through Selection of Graphene Surface Functionalities. ACS Nano, 6(7), 5941-5951. 1936-0851 https://hdl.handle.net/10356/96484 http://hdl.handle.net/10220/10337 10.1021/nn3008096 en ACS nano © 2012 American Chemical Society. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
In order to investigate the effect of graphene surface chemistry on the electrochemical performance of graphene/polyaniline composites as supercapacitor electrodes, graphene oxide (G-O), chemically reduced G-O (RG-O), nitrogen-doped RG-O (N-RG-O), and amine-modified RG-O (NH2-RG-O) were selected as carriers and loaded with about 9 wt % of polyaniline (PANi). The surface chemistry of these materials was analyzed by FTIR, NEXAFS, and XPS, and the type of surface chemistry was found to be important for growth of PANi that influences the magnitude of increase of specific capacitance. The NH2-RG-O/PANi composite exhibited the largest increase in capacitance with a value as high as 500 F g–1 and good cyclability with no loss of capacitance over 680 cycles, much better than that of RG-O/PANi, N-RG-O/PANi, and G-O/PANi when measured in a three-electrode system. A NH2-RG-O/PANi//N-RG-O supercapacitor cell has a capacitance of 79 F g–1, and the corresponding specific capacitance for NH2-RG-O/PANi is 395 F g–1. This research highlights the importance of introducing −NH2 to RG-O to achieve highly stable cycling performance and high capacitance values. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Lai, Linfei Yang, Huanping Wang, Liang Teh, Boon Kin Zhong, Jianqiang Chou, Harry Chen, Luwei Chen, Wei Shen, Zexiang Ruoff, Rodney S. Lin, Jianyi |
format |
Article |
author |
Lai, Linfei Yang, Huanping Wang, Liang Teh, Boon Kin Zhong, Jianqiang Chou, Harry Chen, Luwei Chen, Wei Shen, Zexiang Ruoff, Rodney S. Lin, Jianyi |
spellingShingle |
Lai, Linfei Yang, Huanping Wang, Liang Teh, Boon Kin Zhong, Jianqiang Chou, Harry Chen, Luwei Chen, Wei Shen, Zexiang Ruoff, Rodney S. Lin, Jianyi Preparation of supercapacitor electrodes through selection of graphene surface functionalities |
author_sort |
Lai, Linfei |
title |
Preparation of supercapacitor electrodes through selection of graphene surface functionalities |
title_short |
Preparation of supercapacitor electrodes through selection of graphene surface functionalities |
title_full |
Preparation of supercapacitor electrodes through selection of graphene surface functionalities |
title_fullStr |
Preparation of supercapacitor electrodes through selection of graphene surface functionalities |
title_full_unstemmed |
Preparation of supercapacitor electrodes through selection of graphene surface functionalities |
title_sort |
preparation of supercapacitor electrodes through selection of graphene surface functionalities |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/96484 http://hdl.handle.net/10220/10337 |
_version_ |
1681039197048143872 |