A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers

The development of 3D nanoarchitectures on flexible current collectors has emerged as an effective strategy for preparing advanced portable and wearable power sources. Herein, a flexible and efficient electrode is demonstrated based on electrospun carbon fibers (ECF) substrate with elaborately desig...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Linlin, Peng, Shengjie, Wu, Hao Bin, Yu, Le, Madhavi, Srinivasan, Lou, Xiong Wen David
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/96688
http://hdl.handle.net/10220/38504
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The development of 3D nanoarchitectures on flexible current collectors has emerged as an effective strategy for preparing advanced portable and wearable power sources. Herein, a flexible and efficient electrode is demonstrated based on electrospun carbon fibers (ECF) substrate with elaborately designed hierarchical porous V2O5 nanosheets (V2O5–ECF). The unique configuration of V2O5–ECF composite film fully enables utilization of the synergistic effects from both high electrochemical performance of V2O5 and excellent conductivity of ECF, endowing the films to be an excellent electrode for flexible and lightweight electrochemical capacitors (ECs). Benefiting from their intriguing structural features, V2O5–ECF and ECF films, directly used as electrodes for flexible asymmetric quasi-solid-state electrochemical capacitors, achieve superior flexibility and reliability, enhanced energy/power density, and outstanding cycling stability. Moreover, the ability to power light-emitting diodes (LED) also indicates the feasibility for practical use. Therefore, it is believed that this novel design may find promising application in flexible devices in future.