Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors

Arrays of CuS ultrafine nanoneedles supported on a carbon nanotube (CNT) backbone (CNT@CuS) are fabricated by an efficient template-engaged chemical conversion route. First, the silica coated CNTs (CNT@SiO2) are introduced as the substrate for the growth of copper silicate (CuSilicate) nanoneedles t...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Ting, Xia, Bao Yu, Zhou, Liang, Lou, David Xiong Wen
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/96700
http://hdl.handle.net/10220/11570
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Arrays of CuS ultrafine nanoneedles supported on a carbon nanotube (CNT) backbone (CNT@CuS) are fabricated by an efficient template-engaged chemical conversion route. First, the silica coated CNTs (CNT@SiO2) are introduced as the substrate for the growth of copper silicate (CuSilicate) nanoneedles to form CNT@SiO2@CuSilicate core–shell one-dimensional (1D) structures. In the second step, the CuSilicate nanoneedles are completely transformed into CuS nanoneedles via a hydrothermal treatment with Na2S. Simultaneously the intermediate silica layer is removed during the hydrothermal process, thus resulting in hierarchical CNT@CuS complex nanostructures. In virtue of the unique architecture and intrinsic properties, the as-prepared CNT@CuS hierarchical structures exhibit high capacitance and excellent cycling stability.