Time-frequency peak filtering for the recognition of communication signals

Most existing classification methods cannot work in low signal-to-noise ratio (SNR) environments. This limitation motivates the signal filtering before the classification process. In this paper, a general framework that links the time-frequency peak filtering (TFPF) and traditional feature-based sig...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Haijian, Bi, Guoan
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/96727
http://hdl.handle.net/10220/13117
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Most existing classification methods cannot work in low signal-to-noise ratio (SNR) environments. This limitation motivates the signal filtering before the classification process. In this paper, a general framework that links the time-frequency peak filtering (TFPF) and traditional feature-based signal classification is explored. As the name suggests, TFPF is a filtering approach to encode the received signal as the instantaneous frequency (IF) of an analytic signal, and then the filtered signal is obtained by estimating the peak in the time-frequency domain of the encoded signal. The proposed framework is tested on the recognition of some communication signals. Numerical results demonstrate the effectiveness of this classification scheme for heavily noise corrupted signals. The TFPF based signal classification method exhibits a much better classification performance than the cases where the filtering process is not used.