Translational tilings by a polytope, with multiplicity

We study the problem of covering Rd by overlapping translates of a convex polytope, such that almost every point of Rd is covered exactly k times. Such a covering of Euclidean space by a discrete set of translations is called a k-tiling. The investigation of simple tilings by translations (which...

Full description

Saved in:
Bibliographic Details
Main Authors: Robins, Sinai., Shiryaev, Dmitry., Gravin, Nick.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/96779
http://hdl.handle.net/10220/13087
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We study the problem of covering Rd by overlapping translates of a convex polytope, such that almost every point of Rd is covered exactly k times. Such a covering of Euclidean space by a discrete set of translations is called a k-tiling. The investigation of simple tilings by translations (which we call 1-tilings in this context) began with the work of Fedorov [5] and Minkowski [15], and was later extended by Venkov and McMullen to give a complete characterization of all convex objects that 1-tile Rd. By contrast, for k ≥2, the collection of polytopes that k-tile is much wider than the collection of polytopes that 1-tile, and there is currently no known analogous characterization for the polytopes that k-tile. Here we first give the necessary conditions for polytopes P that k-tile, by proving that if P k-tiles Rd by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski’s conditions for 1-tiling polytopes, but it turns out that very new methods are necessary for the development of the theory. In the case that P has rational vertices, we also prove that the converse is true; that is, if P is a rational polytope, is centrally symmetric, and has centrally symmetric facets, then P must k-tile Rd for some positive integer k.