Human action recognition using meta-cognitive neuro-fuzzy inference system

We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object le...

Full description

Saved in:
Bibliographic Details
Main Authors: Suresh, Sundaram, Subramanian, K.
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/96806
http://hdl.handle.net/10220/11619
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object level, and hence are used to describe the human action in McFIS classifier. McFIS classifier and its sequential learning algorithm is developed based on the principles of self-regulation observed in human meta-cognition. McFIS decides on what-to-learn, when-to-learn and how-to-learn based on the knowledge stored in the classifier and the information contained in the new training samples. The sequential learning algorithm of McFIS is controlled and monitored by the meta-cognitive components which uses class-specific, knowledge based criteria along with self-regulatory thresholds to decide on one of the following strategies: (i) Sample deletion (ii) Sample learning and (iii) Sample reserve. Performance of proposed McFIS based human action recognition system is evaluated using benchmark Weizmann and KTH video sequences. The simulation results are compared with well known SVM classifier and also with state-of-the-art action recognition results reported in the literature. The results clearly indicates McFIS action recognition system achieves better performances with minimal computational effort.