Dynamics of three-dimensional helical domain wall in cylindrical NiFe nanowires

We report on a micromagnetic study on the dynamics of current-driven helical domain wall (DW) in cylindrical NiFe nanowires. The helical DW is a three-dimensional transition region between magnetizations with clockwise and anticlockwise vortex orientations. A minimum current density is needed to ove...

Full description

Saved in:
Bibliographic Details
Main Authors: Wong, De Wei, Chandra Sekhar, M., Gan, Wei Liang, Purnama, Indra, Lew, Wen Siang
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/96997
http://hdl.handle.net/10220/25631
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report on a micromagnetic study on the dynamics of current-driven helical domain wall (DW) in cylindrical NiFe nanowires. The helical DW is a three-dimensional transition region between magnetizations with clockwise and anticlockwise vortex orientations. A minimum current density is needed to overcome an intrinsic pinning to drive the helical DW, and the propagation along the nanowire is accompanied by a rotational motion. As the driving current strength is increased, the rotation ceases while the DW propagates at an increased velocity. However, a velocity barrier is experienced which results in the decrease of the DW mobility. Throughout its motion, the propagated helical DW maintains a stable profile without showing any sign of structural breakdown even at relatively high driving current.