Numerical analyses of steel beam–column joints subjected to catenary action
This paper presents the numerical results of 6 beam–column joint tests using six types of connections: web cleat, fin plate, top and seat with web angles (TSWA) (8 mm thick angle), flush end plate, extended end plate, and TSWA (12 mm thick angle). Both static and explicit dynamic solvers were employ...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/97007 http://hdl.handle.net/10220/11662 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-97007 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-970072020-03-07T11:43:43Z Numerical analyses of steel beam–column joints subjected to catenary action Tan, Kang Hai Yang, Bo School of Civil and Environmental Engineering This paper presents the numerical results of 6 beam–column joint tests using six types of connections: web cleat, fin plate, top and seat with web angles (TSWA) (8 mm thick angle), flush end plate, extended end plate, and TSWA (12 mm thick angle). Both static and explicit dynamic solvers were employed to overcome the problems of convergence, contact, large deformation and fracture simulations. The finite element models were validated against the test results. It is demonstrated that the finite element analyses give reasonable accuracy compared to the test results. The simulation results indicate that a static solver could predict more accurate simulation results than an explicit dynamic solver. But the problem of numerical non-convergence usually occurs when the static solver is employed to conduct fracture simulations. Complete fracture simulations could only be conducted by the explicit dynamic solver although huge computation resources are required for complicated joint models. In addition, an extensive parametric study was undertaken using these validated models to obtain the rotation capacities of various types of connections under catenary action. Finally, some practical design implications have been drawn up from the parametric study and four new connection acceptance criteria of rotation capacities have been proposed to consider catenary action under a middle column removal scenario. The work shows that current acceptance criteria of rotation capacities for steel joints such as web cleat, fin plate, flush end plate and TSWA connections, are probably too conservative as they only consider pure flexural resistance. 2013-07-17T03:09:54Z 2019-12-06T19:37:50Z 2013-07-17T03:09:54Z 2019-12-06T19:37:50Z 2011 2011 Journal Article Yang, B., & Tan, K. H. (2012). Numerical analyses of steel beam–column joints subjected to catenary action. Journal of Constructional Steel Research, 70, 1-11. 0143-974X https://hdl.handle.net/10356/97007 http://hdl.handle.net/10220/11662 10.1016/j.jcsr.2011.10.007 en Journal of constructional steel research © 2011 Elsevier Ltd. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
This paper presents the numerical results of 6 beam–column joint tests using six types of connections: web cleat, fin plate, top and seat with web angles (TSWA) (8 mm thick angle), flush end plate, extended end plate, and TSWA (12 mm thick angle). Both static and explicit dynamic solvers were employed to overcome the problems of convergence, contact, large deformation and fracture simulations. The finite element models were validated against the test results. It is demonstrated that the finite element analyses give reasonable accuracy compared to the test results. The simulation results indicate that a static solver could predict more accurate simulation results than an explicit dynamic solver. But the problem of numerical non-convergence usually occurs when the static solver is employed to conduct fracture simulations. Complete fracture simulations could only be conducted by the explicit dynamic solver although huge computation resources are required for complicated joint models. In addition, an extensive parametric study was undertaken using these validated models to obtain the rotation capacities of various types of connections under catenary action. Finally, some practical design implications have been drawn up from the parametric study and four new connection acceptance criteria of rotation capacities have been proposed to consider catenary action under a middle column removal scenario. The work shows that current acceptance criteria of rotation capacities for steel joints such as web cleat, fin plate, flush end plate and TSWA connections, are probably too conservative as they only consider pure flexural resistance. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Tan, Kang Hai Yang, Bo |
format |
Article |
author |
Tan, Kang Hai Yang, Bo |
spellingShingle |
Tan, Kang Hai Yang, Bo Numerical analyses of steel beam–column joints subjected to catenary action |
author_sort |
Tan, Kang Hai |
title |
Numerical analyses of steel beam–column joints subjected to catenary action |
title_short |
Numerical analyses of steel beam–column joints subjected to catenary action |
title_full |
Numerical analyses of steel beam–column joints subjected to catenary action |
title_fullStr |
Numerical analyses of steel beam–column joints subjected to catenary action |
title_full_unstemmed |
Numerical analyses of steel beam–column joints subjected to catenary action |
title_sort |
numerical analyses of steel beam–column joints subjected to catenary action |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/97007 http://hdl.handle.net/10220/11662 |
_version_ |
1681033985111621632 |