Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells
The microstructures of photo- and counter-electrodes play critical roles in the performance of dye-sensitized solar cells (DSSCs). In particular, various interfaces, such as fluorinated-tin oxide (FTO)/TiO2, TiO2/TiO2, and TiO2/electrolyte, in DSSCs significantly affect the final power conversion ef...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/97032 http://hdl.handle.net/10220/10422 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The microstructures of photo- and counter-electrodes play critical roles in the performance of dye-sensitized solar cells (DSSCs). In particular, various interfaces, such as fluorinated-tin oxide (FTO)/TiO2, TiO2/TiO2, and TiO2/electrolyte, in DSSCs significantly affect the final power conversion efficiency (PCE). However, research has generally focused more on the design of various nanostructured semiconducting materials with emphasis on optimizing chemical or/and physical properties, and less on these interface functionalizations for performance improvement. This work explores a new application of graphene to modify the interface of FTO/TiO2 to suppress charge recombination. In combination with interfaces functionalization of TiO2/TiO2 for low charge-transport resistance and high charge-transfer rate, the final PCE of DSSC is remarkably improved from 5.80% to 8.13%, achieving the highest efficiency in comparison to reported graphene/TiO2-based DSSCs. The method of using graphene to functionalize the surface of FTO substrate provides a better alternative method to the conventional pre-treatment through hydrolyzing TiCl4 and an approach to reduce the adverse effect of microstructural defect of conducting glass substrate for electronic devices. |
---|