Coherent backscattering cone shape depends on the beam size

Coherent backscattering (CBS) is a beautiful physical phenomenon that takes place in a highly scattering medium, which has potential application in noninvasive optical property measurement. The current model that explains the CBS cone shape, however, assumes the incoming beam diameter is infinitely...

全面介紹

Saved in:
書目詳細資料
Main Authors: Bi, Renzhe, Dong, Jing, Lee, Kijoon
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2013
在線閱讀:https://hdl.handle.net/10356/97061
http://hdl.handle.net/10220/10882
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Coherent backscattering (CBS) is a beautiful physical phenomenon that takes place in a highly scattering medium, which has potential application in noninvasive optical property measurement. The current model that explains the CBS cone shape, however, assumes the incoming beam diameter is infinitely large compared to the transport length. In this paper, we evaluate the effect of a finite scalar light illumination area on the CBS cone, both theoretically and experimentally. The quantitative relationship between laser beam size and the CBS cone shape is established by using two different finite beam models (uniform top hat and Gaussian distribution). A series of experimental data with varying beam diameters is obtained for comparison with the theory. Our study shows the CBS cone shape begins to show distortion when beam size becomes submillimeter, and this effect should not be ignored in general. In biological tissue where a normal large beam CBS cone is too narrow for detection, this small beam CBS may be more advantageous for more accurate and higher resolution tissue characterization.