Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/97086 http://hdl.handle.net/10220/38511 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-97086 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-970862021-01-14T08:26:26Z Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis Wu, Bo Fu, Kunwu Yantara, Natalia Xing, Guichuan Sun, Shuangyong Sum, Tze Chien Mathews, Nripan School of Materials Science and Engineering School of Physical and Mathematical Sciences Energy Research Institute @ NTU (ERI@N) DRNTU::Engineering::Materials::Energy materials Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro-optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub-second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi-steady state photoinduced absorption processes, and X-ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E-field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3-based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers. 2015-08-24T09:14:52Z 2019-12-06T19:38:50Z 2015-08-24T09:14:52Z 2019-12-06T19:38:50Z 2015 2015 Journal Article Wu, B., Fu, K., Yantara, N., Xing, G., Sun, S., Sum, T. C., et al. (2015). Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis. Advanced Energy Materials, 5(19). 1614-6832 https://hdl.handle.net/10356/97086 http://hdl.handle.net/10220/38511 10.1002/aenm.201500829 en Advanced energy materials © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Energy materials |
spellingShingle |
DRNTU::Engineering::Materials::Energy materials Wu, Bo Fu, Kunwu Yantara, Natalia Xing, Guichuan Sun, Shuangyong Sum, Tze Chien Mathews, Nripan Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
description |
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro-optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub-second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi-steady state photoinduced absorption processes, and X-ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E-field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3-based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers. |
author2 |
School of Materials Science and Engineering |
author_facet |
School of Materials Science and Engineering Wu, Bo Fu, Kunwu Yantara, Natalia Xing, Guichuan Sun, Shuangyong Sum, Tze Chien Mathews, Nripan |
format |
Article |
author |
Wu, Bo Fu, Kunwu Yantara, Natalia Xing, Guichuan Sun, Shuangyong Sum, Tze Chien Mathews, Nripan |
author_sort |
Wu, Bo |
title |
Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
title_short |
Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
title_full |
Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
title_fullStr |
Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
title_full_unstemmed |
Charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
title_sort |
charge accumulation and hysteresis in perovskite-based solar cells : an electro-optical analysis |
publishDate |
2015 |
url |
https://hdl.handle.net/10356/97086 http://hdl.handle.net/10220/38511 |
_version_ |
1690658336885702656 |