Dynamic response of airport concrete pavement to impact loading
The pavement-subgrade interaction is an important issue in the concrete pavement design.The present study focuses on the analysis of the dynamic deflection and the velocity response of airport concrete pavements to impact loading. The pavement-subgrade interaction is simplified as a linear viscoelas...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/97151 http://hdl.handle.net/10220/10685 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-97151 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-971512020-03-07T11:43:43Z Dynamic response of airport concrete pavement to impact loading Cai, Jing Wong, Louis Ngai Yuen Yan, Hua Wei School of Civil and Environmental Engineering The pavement-subgrade interaction is an important issue in the concrete pavement design.The present study focuses on the analysis of the dynamic deflection and the velocity response of airport concrete pavements to impact loading. The pavement-subgrade interaction is simplified as a linear viscoelastic model, in which the subgrade is composed of two layers (a base layer and a soil layer). The subgrade’s synthetical modulus and damping coefficient are obtained by the method of weighed mean. Through the Fourier and the Laplace transform the solution of the equilibrium equation of the pavement-subgrade system is deduced and the dynamic deflection solution of the pavement-subgrade system is obtained. In this study, an impact aircraft landing load increasing proportional to the aircraft vertical landing acceleration is considered. A Matlab program is compiled based on the solution to assess the influence of various system parameters (slab thickness h, slab size, subgrade reaction modulus Ks and subgrade damping factor C0) on the dynamic deflections of the pavement slab. The influence of h and Ks on the dynamic velocity response of the slab is also discussed. The results show that changing the damping factor and the subgrade reaction modulus has only a small influence on the deflection of the slab and the deflection, while the amplitude of velocity response and the frequency of velocity responses all decrease with the increase of the slab thickness. If the pavement slab size is decreased, the deflection at the center of the slab will decrease. A nonlinear relationship can be established between h and the maximum deflection, while linear relationships exist between C0 and the maximum deflection, as well as Ks and the maximum deflection. 2013-06-26T02:20:33Z 2019-12-06T19:39:26Z 2013-06-26T02:20:33Z 2019-12-06T19:39:26Z 2012 2012 Journal Article Cai, J., Wong, L. N. Y., & Yan, H. W. (2012). Dynamic Response of Airport Concrete Pavement to Impact Loading. Advanced Materials Research, 594-597, 1395-1401. 1662-8985 https://hdl.handle.net/10356/97151 http://hdl.handle.net/10220/10685 10.4028/www.scientific.net/AMR.594-597.1395 en Advanced materials research © 2012 Trans Tech Publications, Switzerland. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
The pavement-subgrade interaction is an important issue in the concrete pavement design.The present study focuses on the analysis of the dynamic deflection and the velocity response of airport concrete pavements to impact loading. The pavement-subgrade interaction is simplified as a linear viscoelastic model, in which the subgrade is composed of two layers (a base layer and a soil layer). The subgrade’s synthetical modulus and damping coefficient are obtained by the method of weighed mean. Through the Fourier and the Laplace transform the solution of the equilibrium equation of the pavement-subgrade system is deduced and the dynamic deflection solution of the pavement-subgrade system is obtained. In this study, an impact aircraft landing load increasing proportional to the aircraft vertical landing acceleration is considered. A Matlab program is compiled based on the solution to assess the influence of various system parameters (slab thickness h, slab size, subgrade reaction modulus Ks and subgrade damping factor C0) on the dynamic deflections of the pavement slab. The influence of h and Ks on the dynamic velocity response of the slab is also discussed. The results show that changing the damping factor and the subgrade reaction modulus has only a small influence on the deflection of the slab and the deflection, while the amplitude of velocity response and the frequency of velocity responses all decrease with the increase of the slab thickness. If the pavement slab size is decreased, the deflection at the center of the slab will decrease. A nonlinear relationship can be established between h and the maximum deflection, while linear relationships exist between C0 and the maximum deflection, as well as Ks and the maximum deflection. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Cai, Jing Wong, Louis Ngai Yuen Yan, Hua Wei |
format |
Article |
author |
Cai, Jing Wong, Louis Ngai Yuen Yan, Hua Wei |
spellingShingle |
Cai, Jing Wong, Louis Ngai Yuen Yan, Hua Wei Dynamic response of airport concrete pavement to impact loading |
author_sort |
Cai, Jing |
title |
Dynamic response of airport concrete pavement to impact loading |
title_short |
Dynamic response of airport concrete pavement to impact loading |
title_full |
Dynamic response of airport concrete pavement to impact loading |
title_fullStr |
Dynamic response of airport concrete pavement to impact loading |
title_full_unstemmed |
Dynamic response of airport concrete pavement to impact loading |
title_sort |
dynamic response of airport concrete pavement to impact loading |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/97151 http://hdl.handle.net/10220/10685 |
_version_ |
1681048021937160192 |