Active focal length control of terahertz slitted plane lenses by magnetoplasmons
Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tun...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/97195 http://hdl.handle.net/10220/10544 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-97195 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-971952020-03-07T12:34:41Z Active focal length control of terahertz slitted plane lenses by magnetoplasmons Hu, Bin Wang, Qi Jie Kok, Shaw Wei Zhang, Ying School of Electrical and Electronic Engineering School of Physical and Mathematical Sciences A*STAR SIMTech Microelectronics Centre Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tuned by changing the cyclotron frequency through manipulating magnetoplasmons (MPs). We have theoretically investigated the dispersion relation of MPs of a semiconductor–insulator–semiconductor structure in the Voigt configuration and systematically designed several lenses realized with a doped semiconductor slab perforated with sub-wavelength slits. It is shown through finite–difference time–domain simulations that THz wave propagating through the designed structure can be focused to a small size spot via the control of MPs. The tuning range of the focal length under the applied magnetic field (up to 1 T) is ∼3λ, about 50% of the original focal length. Various lenses, including one with two focal spots and a tunable lens for dipole source imaging, are realized for the proposed structure, demonstrating the flexibility of the design approach. The proposed tunable THz plasmonic lenses may find applications in THz science and technology such as THz imaging. 2013-06-24T07:39:56Z 2019-12-06T19:40:06Z 2013-06-24T07:39:56Z 2019-12-06T19:40:06Z 2011 2011 Journal Article Hu, B., Wang, Q. J., Kok, S. W., & Zhang, Y. (2012). Active Focal Length Control of Terahertz Slitted Plane Lenses by Magnetoplasmons. Plasmonics, 7(2), 191-199. 1557-1955 https://hdl.handle.net/10356/97195 http://hdl.handle.net/10220/10544 10.1007/s11468-011-9293-5 en Plasmonics © 2011 Springer Science+Business Media, LLC. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tuned by changing the cyclotron frequency through manipulating magnetoplasmons (MPs). We have theoretically investigated the dispersion relation of MPs of a semiconductor–insulator–semiconductor structure in the Voigt configuration and systematically designed several lenses realized with a doped semiconductor slab perforated with sub-wavelength slits. It is shown through finite–difference time–domain simulations that THz wave propagating through the designed structure can be focused to a small size spot via the control of MPs. The tuning range of the focal length under the applied magnetic field (up to 1 T) is ∼3λ, about 50% of the original focal length. Various lenses, including one with two focal spots and a tunable lens for dipole source imaging, are realized for the proposed structure, demonstrating the flexibility of the design approach. The proposed tunable THz plasmonic lenses may find applications in THz science and technology such as THz imaging. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Hu, Bin Wang, Qi Jie Kok, Shaw Wei Zhang, Ying |
format |
Article |
author |
Hu, Bin Wang, Qi Jie Kok, Shaw Wei Zhang, Ying |
spellingShingle |
Hu, Bin Wang, Qi Jie Kok, Shaw Wei Zhang, Ying Active focal length control of terahertz slitted plane lenses by magnetoplasmons |
author_sort |
Hu, Bin |
title |
Active focal length control of terahertz slitted plane lenses by magnetoplasmons |
title_short |
Active focal length control of terahertz slitted plane lenses by magnetoplasmons |
title_full |
Active focal length control of terahertz slitted plane lenses by magnetoplasmons |
title_fullStr |
Active focal length control of terahertz slitted plane lenses by magnetoplasmons |
title_full_unstemmed |
Active focal length control of terahertz slitted plane lenses by magnetoplasmons |
title_sort |
active focal length control of terahertz slitted plane lenses by magnetoplasmons |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/97195 http://hdl.handle.net/10220/10544 |
_version_ |
1681046715072774144 |