The effect of fabrication method of hierarchical 3D TiO2 nanorod spheres on photocatalytic pollutants degradation

The effect of fabrication method on the properties of hierarchical 3D TiO2 nanostructures was investigated by employing and developing both hydrothermal method and calcination method to synthesize hierarchical 3D TiO2 nanorod spheres in this study. A comprehensive comparison in terms of morphologies...

全面介紹

Saved in:
書目詳細資料
Main Authors: Lee, Siew Siang, Bai, Hongwei, Sun, Darren Delai, Liu, Zhaoyang
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2013
在線閱讀:https://hdl.handle.net/10356/97204
http://hdl.handle.net/10220/10772
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The effect of fabrication method on the properties of hierarchical 3D TiO2 nanostructures was investigated by employing and developing both hydrothermal method and calcination method to synthesize hierarchical 3D TiO2 nanorod spheres in this study. A comprehensive comparison in terms of morphologies, crystallization, specific surface areas, light absorption capabilities, and photoluminescence spectrum was conducted between 3D TiO2 nanorod spheres synthesized via hydrothermal method and that synthesized via calcination method. A better photocatalytic activity was demonstrated over the TiO2 nanorod spheres synthesized through calcination method. This was ascribed to the better crystallization and monodispersion of the hierarchical 3D TiO2 nanorod spheres resulted from the calcination method; thus rendering it with more superior characteristics such as larger specific surface area, enhanced light absorption capability and faster transfer of electrons which suppress the recombination of photogenerated electrons and holes. This study is thus significant not only in promoting the development of hierarchical 3D TiO2 nanorod spheres via different methods, but also in revealing the effect of fabrication method on the photocatalytic activity of hierarchical 3D TiO2 nanorod spheres. The calcination method is proposed to be a facile and promising method for scale-up production of the hierarchical 3D TiO2 nanorod spheres with high photocatalytic activity for efficient pollutants degradation.