An electrooculogram based assistive communication system with improved speed and accuracy using multi-directional eye movements
Human-Computer Interface (HCI) enables people to control computer applications using bio-electric signals recorded from the body. HCI can be a potential tool for people with severe motor disabilities to communicate to external world through bio-electric signals. In an Electrooculogram (EOG) based HC...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/97287 http://hdl.handle.net/10220/11835 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Human-Computer Interface (HCI) enables people to control computer applications using bio-electric signals recorded from the body. HCI can be a potential tool for people with severe motor disabilities to communicate to external world through bio-electric signals. In an Electrooculogram (EOG) based HCI, signals during various eye (cornea) movements are employed to generate control signals. This paper presents the design of an EOG-based typing system which uses a virtual keyboard for typing letters on the monitor using 8 types of distinct EOG patterns. Identification of EOG pattern is based on the amplitude and timing of positive and negative components within the signal. Experimental results show that proposed EOG-based typing system achieves a higher typing speed of 15 letters/min and an improved accuracy of 95.2% compared to the state-of art method that has a typing speed of 12.1 letters/min and accuracy of 90.4%. |
---|