Securing wireless mesh networks in a unified security framework with corruption-resilience
Wireless mesh networks (WMN) are expected to be widespread due to their excellent properties like low-cost deployment, easy arrangement and self-organization. Although some proposed security schemes for WMNs with various security objectives have been put forward recently, it is a challenge to employ...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/97452 http://hdl.handle.net/10220/13143 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-97452 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-974522020-03-07T14:02:47Z Securing wireless mesh networks in a unified security framework with corruption-resilience Wang, Ze Ma, Maode Wu, Jigang School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Wireless mesh networks (WMN) are expected to be widespread due to their excellent properties like low-cost deployment, easy arrangement and self-organization. Although some proposed security schemes for WMNs with various security objectives have been put forward recently, it is a challenge to employ a uniform cryptography context to achieve resilience to trust authority corruption and maintain trust relationships flexibly among different domains. In this paper, a unified security framework (USF) for multi-domain wireless mesh networks is proposed. The identity-based encryption and the certificateless signature are unified in the proposed cryptography operations utilizing bilinear groups to solve key escrow problem. To ensure secure muliti-hop communication in WMN, the intra and inter domain authentication and key agreement protocols are devised sophisticatedly to achieve perfect forward secrecy and attack-resilience. With the enhanced security properties in the USF scheme, when a trust authority is corrupted, parts of the WMN could be survivable in the local area if proper measures are taken. A formal security proof of the proposed authentication protocols is presented based on Universal Composable security theory. The detailed performance analysis shows that the enhanced security attributes are achieved with reasonable overhead. 2013-08-15T08:53:39Z 2019-12-06T19:42:55Z 2013-08-15T08:53:39Z 2019-12-06T19:42:55Z 2012 2012 Journal Article Wang, Z., Ma, M.,& Wu, J. (2012). Securing wireless mesh networks in a unified security framework with corruption-resilience. Computer Networks, 56(12), 2981-2993. 1389-1286 https://hdl.handle.net/10356/97452 http://hdl.handle.net/10220/13143 10.1016/j.comnet.2012.05.010 en Computer networks |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Wang, Ze Ma, Maode Wu, Jigang Securing wireless mesh networks in a unified security framework with corruption-resilience |
description |
Wireless mesh networks (WMN) are expected to be widespread due to their excellent properties like low-cost deployment, easy arrangement and self-organization. Although some proposed security schemes for WMNs with various security objectives have been put forward recently, it is a challenge to employ a uniform cryptography context to achieve resilience to trust authority corruption and maintain trust relationships flexibly among different domains. In this paper, a unified security framework (USF) for multi-domain wireless mesh networks is proposed. The identity-based encryption and the certificateless signature are unified in the proposed cryptography operations utilizing bilinear groups to solve key escrow problem. To ensure secure muliti-hop communication in WMN, the intra and inter domain authentication and key agreement protocols are devised sophisticatedly to achieve perfect forward secrecy and attack-resilience. With the enhanced security properties in the USF scheme, when a trust authority is corrupted, parts of the WMN could be survivable in the local area if proper measures are taken. A formal security proof of the proposed authentication protocols is presented based on Universal Composable security theory. The detailed performance analysis shows that the enhanced security attributes are achieved with reasonable overhead. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Wang, Ze Ma, Maode Wu, Jigang |
format |
Article |
author |
Wang, Ze Ma, Maode Wu, Jigang |
author_sort |
Wang, Ze |
title |
Securing wireless mesh networks in a unified security framework with corruption-resilience |
title_short |
Securing wireless mesh networks in a unified security framework with corruption-resilience |
title_full |
Securing wireless mesh networks in a unified security framework with corruption-resilience |
title_fullStr |
Securing wireless mesh networks in a unified security framework with corruption-resilience |
title_full_unstemmed |
Securing wireless mesh networks in a unified security framework with corruption-resilience |
title_sort |
securing wireless mesh networks in a unified security framework with corruption-resilience |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/97452 http://hdl.handle.net/10220/13143 |
_version_ |
1681038157846413312 |