Mechanism for stable, ultra-flat multiwavelength operation in erbium-doped fiber lasers employing intensity-dependent loss
We study a mechanism to attain stable and ultra-flat multiwavelength oscillations in erbium-doped fiber lasers (EDFLs). The key concept is to introduce intensity-dependent loss (IDL) into the laser cavity, which can effectively suppress the mode competition in the homogeneously broadened gain medium...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/97469 http://hdl.handle.net/10220/10630 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We study a mechanism to attain stable and ultra-flat multiwavelength oscillations in erbium-doped fiber lasers (EDFLs). The key concept is to introduce intensity-dependent loss (IDL) into the laser cavity, which can effectively suppress the mode competition in the homogeneously broadened gain medium and ensure a uniform power distribution over wavelengths via the gain-clamping effect. The technique was successfully demonstrated by employing a nonlinear optical loop mirror (NOLM) in erbium-doped fiber laser cavity. Based on the experimental results, further experimental investigation and theoretical analysis are carried out to show the effectiveness of the gain-clamping mechanism in realizing the multiwavelength operation of the EDFL. |
---|