A novel low-waveguide-crossing floorplan for fat tree based optical networks-on-chip

Optical network-on-chip (ONoC) can be used as the communication backbone for high performance chip multiprocessors (CMPs). Fat tree based ONoC shows high throughput, small delay and low power consumption. However, the traditional floorplan design of fat tree based ONoC has a large number of waveguid...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Zhehui, Xu, Jiang, Wu, Xiaowen, Ye, Yaoyao, Zhang, Wei, Liu, Weichen, Nikdast, Mahdi, Wang, Xuan, Wang, Zhe
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/97799
http://hdl.handle.net/10220/12163
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Optical network-on-chip (ONoC) can be used as the communication backbone for high performance chip multiprocessors (CMPs). Fat tree based ONoC shows high throughput, small delay and low power consumption. However, the traditional floorplan design of fat tree based ONoC has a large number of waveguide crossings because of the fat tree topology. In this paper, we present an optimized floorplan with the least number of waveguide crossings that has been reported. The average number of waveguide crossings per optical path in the optimized floorplan is 87% less than that in traditional floorplan for a 64-core CMP. We also find the optimal aspect ratio of cores to minimize the end-to-end delay. These work could help to ease the physical implementation of fat tree based ONoC for CMP.