Fuzzy associative learning of feature dependency for time series forecasting
Neuro-fuzzy system (NFS) has successfully been widely applied in solving problems across diverse fields, such as signal detection, fault detection, and forecasting. In recent years, many forecasting problems require the processing and learning of large number of dynamic data streams. Existing system...
محفوظ في:
المؤلفون الرئيسيون: | Ng, See Kiong, Cheu, Eng Yeow, Sim, Kelvin, Quek, Chai |
---|---|
مؤلفون آخرون: | School of Computer Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/97871 http://hdl.handle.net/10220/12421 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
ARPOP : an Appetitive Reward-based Pseudo-Outer-Product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia
بواسطة: Cheu, Eng Yeow, وآخرون
منشور في: (2013) -
Deep learning for financial time series forecasting
بواسطة: Xia, Yuqian
منشور في: (2018) -
Development of finite memory neural fuzzy networks for lag-free improved time series forecasting
بواسطة: Subhrajit Samanta
منشور في: (2021) -
Deep learning for power system time series forecasting
بواسطة: Sun, Weijia
منشور في: (2018) -
Traffic prediction using a Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) fuzzy neural network
بواسطة: Nguyen, Ngoc Nam, وآخرون
منشور في: (2013)