Application of Mawhin's coincidence degree and matrix spectral theory to a delayed system

This paper gives an application of Mawhin’s coincidence degree and matrix spectral theory to a predator-prey model with M-predators and N-preys. The method is different from that used in the previous work. Some new sufficient conditions are obtained for the existence and global asymptotic stability...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Xia, Yong-Hui, Gu, Xiang, Wong, Patricia Jia Yiing, Abbas, Syed
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2013
الوصول للمادة أونلاين:https://hdl.handle.net/10356/98011
http://hdl.handle.net/10220/12253
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This paper gives an application of Mawhin’s coincidence degree and matrix spectral theory to a predator-prey model with M-predators and N-preys. The method is different from that used in the previous work. Some new sufficient conditions are obtained for the existence and global asymptotic stability of the periodic solution. The existence and stability conditions are given in terms of spectral radius of explicit matrices which are much different from the conditions given by the algebraic inequalities. Finally, an example is given to show the feasibility of our results.