Efficient distributed approximation algorithms via probabilistic tree embeddings
We present a uniform approach to design efficient distributed approximation algorithms for various fundamental network optimization problems. Our approach is randomized and based on a probabilistic tree embedding due to Fakcharoenphol et al. (J Comput Syst Sci 69(3):485–497, 2004) (FRT embedding). W...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/98033 http://hdl.handle.net/10220/13238 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-98033 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-980332020-03-07T12:34:43Z Efficient distributed approximation algorithms via probabilistic tree embeddings Khan, Maleq. Kuhn, Fabian. Malkhi, Dahlia. Pandurangan, Gopal. Talwar, Kunal. School of Physical and Mathematical Sciences We present a uniform approach to design efficient distributed approximation algorithms for various fundamental network optimization problems. Our approach is randomized and based on a probabilistic tree embedding due to Fakcharoenphol et al. (J Comput Syst Sci 69(3):485–497, 2004) (FRT embedding). We show how to efficiently compute an (implicit) FRT embedding in a decentralized manner and how to use the embedding to obtain efficient expected O(log n)-approximate distributed algorithms for various problems, in particular the generalized Steiner forest problem (including the minimum Steiner tree problem), the minimum routing cost spanning tree problem, and the k-source shortest paths problem. The distributed construction of the FRT embedding is based on the computation of least elements (LE) lists, a distributed data structure that is of independent interest. Assuming a global order on the nodes of a network, the LE-list of a node stores the smallest node (w.r.t. the given order) within every distance d (cf. Cohen in J Comput Syst Sci 55(3):441–453, 1997, Cohen and Kaplan in J Comput Syst Sci 73(3):265–288, 2007). Assuming a random order on the nodes, we give a distributed algorithm for computing LE-lists on a weighted graph with time complexity O(S log n), where S is a graph parameter called the shortest path diameter which can be considered the weighted counterpart of the diameter D of the graph. For unweighted graphs, our LE-lists computation has asymptotically optimal time complexity of O(D). As a byproduct, we get an improved synchronous leader election algorithm for general networks that is both time-optimal and almost message-optimal with high probability. 2013-08-27T03:31:07Z 2019-12-06T19:49:53Z 2013-08-27T03:31:07Z 2019-12-06T19:49:53Z 2012 2012 Journal Article Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., & Talwar, K. (2012). Efficient distributed approximation algorithms via probabilistic tree embeddings. Distributed Computing, 25(3), 189-205. https://hdl.handle.net/10356/98033 http://hdl.handle.net/10220/13238 10.1007/s00446-012-0157-9 en Distributed computing |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
We present a uniform approach to design efficient distributed approximation algorithms for various fundamental network optimization problems. Our approach is randomized and based on a probabilistic tree embedding due to Fakcharoenphol et al. (J Comput Syst Sci 69(3):485–497, 2004) (FRT embedding). We show how to efficiently compute an (implicit) FRT embedding in a decentralized manner and how to use the embedding to obtain efficient expected O(log n)-approximate distributed algorithms for various problems, in particular the generalized Steiner forest problem (including the minimum Steiner tree problem), the minimum routing cost spanning tree problem, and the k-source shortest paths problem. The distributed construction of the FRT embedding is based on the computation of least elements (LE) lists, a distributed data structure that is of independent interest. Assuming a global order on the nodes of a network, the LE-list of a node stores the smallest node (w.r.t. the given order) within every distance d (cf. Cohen in J Comput Syst Sci 55(3):441–453, 1997, Cohen and Kaplan in J Comput Syst Sci 73(3):265–288, 2007). Assuming a random order on the nodes, we give a distributed algorithm for computing LE-lists on a weighted graph with time complexity O(S log n), where S is a graph parameter called the shortest path diameter which can be considered the weighted counterpart of the diameter D of the graph. For unweighted graphs, our LE-lists computation has asymptotically optimal time complexity of O(D). As a byproduct, we get an improved synchronous leader election algorithm for general networks that is both time-optimal and almost message-optimal with high probability. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Khan, Maleq. Kuhn, Fabian. Malkhi, Dahlia. Pandurangan, Gopal. Talwar, Kunal. |
format |
Article |
author |
Khan, Maleq. Kuhn, Fabian. Malkhi, Dahlia. Pandurangan, Gopal. Talwar, Kunal. |
spellingShingle |
Khan, Maleq. Kuhn, Fabian. Malkhi, Dahlia. Pandurangan, Gopal. Talwar, Kunal. Efficient distributed approximation algorithms via probabilistic tree embeddings |
author_sort |
Khan, Maleq. |
title |
Efficient distributed approximation algorithms via probabilistic tree embeddings |
title_short |
Efficient distributed approximation algorithms via probabilistic tree embeddings |
title_full |
Efficient distributed approximation algorithms via probabilistic tree embeddings |
title_fullStr |
Efficient distributed approximation algorithms via probabilistic tree embeddings |
title_full_unstemmed |
Efficient distributed approximation algorithms via probabilistic tree embeddings |
title_sort |
efficient distributed approximation algorithms via probabilistic tree embeddings |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/98033 http://hdl.handle.net/10220/13238 |
_version_ |
1681043431904772096 |