The data-driven approach as an operational real-time flood forecasting model
Accurate water level forecasts are essential for flood warning. This study adopts a data-driven approach based on the adaptive network–based fuzzy inference system (ANFIS) to forecast the daily water levels of the Lower Mekong River at Pakse, Lao People’s Democratic Republic. ANFIS is a hybrid...
محفوظ في:
المؤلفون الرئيسيون: | Nguyen, Phuoc Khac-Tien, Chua, Lloyd Hock Chye |
---|---|
مؤلفون آخرون: | School of Civil and Environmental Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2012
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/98067 http://hdl.handle.net/10220/8865 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Adaptive neuro-fuzzy inference system for flood forecasting in a large river system
بواسطة: Nguyen, Khac Tien Phuoc
منشور في: (2012) -
Comparison between response surface models and artificial neural networks in hydrologic forecasting
بواسطة: Yu, Jianjun, وآخرون
منشور في: (2014) -
Entrainment and mixing layer oscillations induced by a flow beneath a rectangular compartment
بواسطة: Chua, Lloyd Hock Chye.
منشور في: (2009) -
Mixing between sea and fresh water layers in a floating storage tank with a concentric bottom opening
بواسطة: Chua, Lloyd Hock Chye.
منشور في: (2009) -
Development of novel systems-analysis methodologies for supporting flood forecasting and uncertainty assessment
بواسطة: Yu, Jianjun
منشور في: (2014)