Robust EEG channel selection across sessions in brain-computer interface involving stroke patients

Brain-computer interface (BCI) technology has shown the capability of improving the quality of life for people with severe motor disabilities. To improve the portability and practicability of BCI systems, it is crucial to reduce the number of EEG channels as well as to have a good reliability. Howev...

全面介紹

Saved in:
書目詳細資料
Main Authors: Arvaneh, Mahnaz, Guan, Cuntai, Ang, Kai Keng, Quek, Chai
其他作者: School of Computer Engineering
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/98313
http://hdl.handle.net/10220/12419
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Brain-computer interface (BCI) technology has shown the capability of improving the quality of life for people with severe motor disabilities. To improve the portability and practicability of BCI systems, it is crucial to reduce the number of EEG channels as well as to have a good reliability. However, a relatively neglected issue in the EEG channel selection studies is the robustness of selected channels across sessions. This paper investigates whether the selected channels from first session is also useful for subsequent sessions on other days for a stroke patient. For this purpose, a new robust sparse common spatial pattern (RSCSP) algorithm is proposed for optimal EEG channel selection. Thereafter, the robustness of the proposed algorithm as well as 5 existing channel selection algorithms is investigated across 12 sessions data from 11 stroke patients who performed motor imagery based-BCI rehabilitation. The experimental results show that the proposed RSCSP channel selection algorithm significantly outperforms the other channel selection algorithms, when the 8 channels selected from the first session are evaluated on the 11 subsequent sessions. Moreover, there is no significant difference between the classification results of 8 channels selected by the proposed RSCSP algorithm from the first session and the classification results of 8 optimal channels selected from the same session as the test session.