Sparse ACEKF for phase reconstruction
We propose a novel low-complexity recursive filter to efficiently recover quantitative phase from a series of noisy intensity images taken through focus. We first transform the wave propagation equation and nonlinear observation model (intensity measurement) into a complex augmented state space mode...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/98619 http://hdl.handle.net/10220/13307 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | We propose a novel low-complexity recursive filter to efficiently recover quantitative phase from a series of noisy intensity images taken through focus. We first transform the wave propagation equation and nonlinear observation model (intensity measurement) into a complex augmented state space model. From the state space model, we derive a sparse augmented complex extended Kalman filter (ACEKF) to infer the complex optical field (amplitude and phase), and find that it converges under mild conditions. Our proposed method has a computational complexity of NzN logN and storage requirement of ?(N), compared with the original ACEKF method, which has a computational complexity of ?(NzN3) and storage requirement of ?(N2), where Nz is the number of images and N is the number of pixels in each image. Thus, it is efficient, robust and recursive, and may be feasible for real-time phase recovery applications with high resolution images. |
---|