An extreme learning machine approach for speaker recognition
Over the last two decades, automatic speaker recognition has been an interesting and challenging problem to speech researchers. It can be classified into two different categories, speaker identification and speaker verification. In this paper, a new classifier, extreme learning machine, is examined...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/98637 http://hdl.handle.net/10220/17531 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Over the last two decades, automatic speaker recognition has been an interesting and challenging problem to speech researchers. It can be classified into two different categories, speaker identification and speaker verification. In this paper, a new classifier, extreme learning machine, is examined on the text-independent speaker verification task and compared with SVM classifier. Extreme learning machine (ELM) classifiers have been proposed for generalized single hidden layer feedforward networks with a wide variety of hidden nodes. They are extremely fast in learning and perform well on many artificial and real regression and classification applications. The database used to evaluate the ELM and SVM classifiers is ELSDSR corpus, and the Mel-frequency Cepstral Coefficients were extracted and used as the input to the classifiers. Empirical studies have shown that ELM classifiers and its variants could perform better than SVM classifiers on the dataset provided with less training time. |
---|