A model-based approach to attributed graph clustering
Graph clustering, also known as community detection, is a long-standing problem in data mining. However, with the proliferation of rich attribute information available for objects in real-world graphs, how to leverage structural and attribute information for clustering attributed graphs becomes a ne...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/98766 http://hdl.handle.net/10220/12623 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Graph clustering, also known as community detection, is a long-standing problem in data mining. However, with the proliferation of rich attribute information available for objects in real-world graphs, how to leverage structural and attribute information for clustering attributed graphs becomes a new challenge. Most existing works take a distance-based approach. They proposed various distance measures to combine structural and attribute information. In this paper, we consider an alternative view and propose a model-based approach to attributed graph clustering. We develop a Bayesian probabilistic model for attributed graphs. The model provides a principled and natural framework for capturing both structural and attribute aspects of a graph, while avoiding the artificial design of a distance measure. Clustering with the proposed model can be transformed into a probabilistic inference problem, for which we devise an efficient variational algorithm. Experimental results on large real-world datasets demonstrate that our method significantly outperforms the state-of-art distance-based attributed graph clustering method. |
---|