Truss decomposition in massive networks
The k-truss is a type of cohesive subgraphs proposed recently for the study of networks. While the problem of computing most cohesive subgraphs is NP-hard, there exists a polynomial time algorithm for computing k-truss. Compared with k-core which is also efficient to compute, k-truss represents the...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/98773 http://hdl.handle.net/10220/13430 http://dl.acm.org/citation.cfm?id=2311909 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The k-truss is a type of cohesive subgraphs proposed recently for the study of networks. While the problem of computing most cohesive subgraphs is NP-hard, there exists a polynomial time algorithm for computing k-truss. Compared with k-core which is also efficient to compute, k-truss represents the "core" of a k-core that keeps the key information of, while filtering out less important information from, the k-core. However, existing algorithms for computing k-truss are inefficient for handling today's massive networks. We first improve the existing in-memory algorithm for computing k-truss in networks of moderate size. Then, we propose two I/O-efficient algorithms to handle massive networks that cannot fit in main memory. Our experiments on real datasets verify the efficiency of our algorithms and the value of k-truss. |
---|