An ultra-fast 65nm capacitorless LDO regulator dedicated for sensory detection using a direct feedback dual self-reacting loop technique

This article presents an ultra-fast 65nm LDO regulator dedicated for sensory detection using a direct feedback dual self reacting loop technique. This novel technique enabled the regulator to achieve a very fast response time of 0.10μs for a maximum load current transition from 1 to 50mA. Furthermor...

Full description

Saved in:
Bibliographic Details
Main Authors: Kok, Chiang-Liang, Siek, Liter, Lim, Wei Meng
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/98893
http://hdl.handle.net/10220/12744
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This article presents an ultra-fast 65nm LDO regulator dedicated for sensory detection using a direct feedback dual self reacting loop technique. This novel technique enabled the regulator to achieve a very fast response time of 0.10μs for a maximum load current transition from 1 to 50mA. Furthermore, it achieves a very low quiescent current of 5.0μA coupled with a low power consumption of 5.0μW. This LDO regulator, simulated with Global Foundries 65nm CMOS process, yields a stable output voltage of 0.8V with a supply voltage ranging from 1-1.4V. Its distinct features, ultra-fast response time and very low power consumption, make it ideally suitable for sensory detection.