Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor

The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer...

Full description

Saved in:
Bibliographic Details
Main Authors: Nguyen, Binh Thi Thanh, Peh, Alister En Kai, Chee, Celine Yue Ling, Fink, Katja, Chow, Vincent T. K., Ng, Mary M. L., Toh, Chee-Seng
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/99013
http://hdl.handle.net/10220/12707
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-99013
record_format dspace
spelling sg-ntu-dr.10356-990132020-03-07T12:34:45Z Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor Nguyen, Binh Thi Thanh Peh, Alister En Kai Chee, Celine Yue Ling Fink, Katja Chow, Vincent T. K. Ng, Mary M. L. Toh, Chee-Seng School of Physical and Mathematical Sciences The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (Rs), the porous alumina channels (including biomaterials) (Q1, R1) and the conductive electrode substrate layer (Q2, R2). Both channel resistance R1 and capacitance Q1 change in response to the increase of the Denv2 virus concentration. A linear relationship between R1 and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL− 1) can be derived using Langmuir–Freundlich isotherm model. At 1 pfu mL− 1 Denv2 concentration, R1 can be distinguished from that of the cell culture control sample. Moreover, Q1 doubles when Denv2 is added but remains unchanged in the presence of two other non-specific viruses — West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance. 2013-08-01T02:17:11Z 2019-12-06T20:02:19Z 2013-08-01T02:17:11Z 2019-12-06T20:02:19Z 2012 2012 Journal Article Nguyen, B. T. T., Peh, A. E. K., Chee, C. Y. L., Fink, K., Chow, V. T., Ng, M. M.,& Toh, C. S. (2012). Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry, 88, 15-21. 1567-5394 https://hdl.handle.net/10356/99013 http://hdl.handle.net/10220/12707 10.1016/j.bioelechem.2012.04.006 en Bioelectrochemistry
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
description The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (Rs), the porous alumina channels (including biomaterials) (Q1, R1) and the conductive electrode substrate layer (Q2, R2). Both channel resistance R1 and capacitance Q1 change in response to the increase of the Denv2 virus concentration. A linear relationship between R1 and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL− 1) can be derived using Langmuir–Freundlich isotherm model. At 1 pfu mL− 1 Denv2 concentration, R1 can be distinguished from that of the cell culture control sample. Moreover, Q1 doubles when Denv2 is added but remains unchanged in the presence of two other non-specific viruses — West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Nguyen, Binh Thi Thanh
Peh, Alister En Kai
Chee, Celine Yue Ling
Fink, Katja
Chow, Vincent T. K.
Ng, Mary M. L.
Toh, Chee-Seng
format Article
author Nguyen, Binh Thi Thanh
Peh, Alister En Kai
Chee, Celine Yue Ling
Fink, Katja
Chow, Vincent T. K.
Ng, Mary M. L.
Toh, Chee-Seng
spellingShingle Nguyen, Binh Thi Thanh
Peh, Alister En Kai
Chee, Celine Yue Ling
Fink, Katja
Chow, Vincent T. K.
Ng, Mary M. L.
Toh, Chee-Seng
Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
author_sort Nguyen, Binh Thi Thanh
title Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
title_short Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
title_full Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
title_fullStr Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
title_full_unstemmed Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
title_sort electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor
publishDate 2013
url https://hdl.handle.net/10356/99013
http://hdl.handle.net/10220/12707
_version_ 1681045967789359104