Semiparametric estimation for inverse density weighted expectations when responses are missing at random
When responses are missing at random, we consider semiparametric estimation of inverse density weighted expectations, or equivalently, integrals of conditional expectations. An inverse probability weighted estimator and a full propensity score weighted estimator are proposed and shown to be asymptot...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99040 http://hdl.handle.net/10220/17092 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | When responses are missing at random, we consider semiparametric estimation of inverse density weighted expectations, or equivalently, integrals of conditional expectations. An inverse probability weighted estimator and a full propensity score weighted estimator are proposed and shown to be asymptotically normal. The two estimators are asymptotically equivalent and achieve the semiparametric efficiency bound. The performances of the estimators are investigated and compared with simulation studies and a real data example. |
---|