FLIGHT : clock calibration using fluorescent lighting
In this paper, we propose a novel clock calibration approach called FLIGHT, which leverages the fact that the fluorescent light intensity changes with a stable period that equals half of the alternating current's. By tuning to the light emitted from indoor fluorescent lamps, FLIGHT can intellig...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99064 http://hdl.handle.net/10220/12542 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we propose a novel clock calibration approach called FLIGHT, which leverages the fact that the fluorescent light intensity changes with a stable period that equals half of the alternating current's. By tuning to the light emitted from indoor fluorescent lamps, FLIGHT can intelligently extract the light period information and achieve network wide time calibration by referring to such a common time reference. We address a series of practical challenges and implement FLIGHT in TelosB motes. We conduct comprehensive experiments using a 12-node test-bed in both static and mobile environments. Over one-week measurement suggests that compared with existing technologies, FLIGHT can achieve tightly synchronized time with low energy consumption. |
---|