Extension of solutions of convolution equations in spaces of holomorphic functions with polynomial growth in convex domains

In this paper we consider a problem of extension of solutions to homogeneous convolution equations defined by operators acting from a space A−∞(D+K)A−∞(D+K) of holomorphic functions with polynomial growth near the boundary of D+KD+K into another space of such a type A−∞(D)A−∞(D) (D and K being a bou...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Khoi, Le Hai., Ishimura, Ryuichi., Abanin, Alexander V.
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/99099
http://hdl.handle.net/10220/12746
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this paper we consider a problem of extension of solutions to homogeneous convolution equations defined by operators acting from a space A−∞(D+K)A−∞(D+K) of holomorphic functions with polynomial growth near the boundary of D+KD+K into another space of such a type A−∞(D)A−∞(D) (D and K being a bounded convex domain and a convex compact set in CC, respectively). We show that under some exact conditions each such solution can be extended as A−∞(Ω+K)A−∞(Ω+K)-solution, where Ω⊃DΩ⊃D is a certain convex domain.