Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria
Plasmodium infections trigger strong innate and acquired immune responses, which can lead to severe complications, including the most feared and often fatal cerebral malaria (CM). To begin to dissect the roles of different dendritic cell (DC) subsets in Plasmodium-induced pathology, we have generate...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99110 http://hdl.handle.net/10220/13021 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99110 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-991102020-03-07T12:18:20Z Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria Ruedl, Christiane Piva, L. Tetlak, P. Claser, C. Karjalainen, K. Renia, L. School of Biological Sciences DRNTU::Science::Biological sciences Plasmodium infections trigger strong innate and acquired immune responses, which can lead to severe complications, including the most feared and often fatal cerebral malaria (CM). To begin to dissect the roles of different dendritic cell (DC) subsets in Plasmodium-induced pathology, we have generated a transgenic strain, Clec9A-diphtheria toxin receptor that allows us to ablate in vivo Clec9A+ DCs. Specifically, we have analyzed the in vivo contribution of this DC subset in an experimental CM model using Plasmodium berghei, and we provide strong evidence that the absence of this DC subset resulted in complete resistance to experimental CM. This was accompanied with dramatic reduction of brain CD8 + T cells, and those few cerebral CD8 + T cells present had a less activated phenotype, unlike their wildtype counterparts that expressed IFN-γ and especially granzyme B. This almost complete absence of local cellular responses was also associated with reduced parasite load in the brain. NMRC (Natl Medical Research Council, S’pore) 2013-08-05T07:11:52Z 2019-12-06T20:03:30Z 2013-08-05T07:11:52Z 2019-12-06T20:03:30Z 2012 2012 Journal Article Piva, L., Tetlak, P., Claser, C., Karjalainen, K., Renia, L.,& Ruedl, C. (2012). Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria. The journal of immunology, 189(3), 1128-1132. https://hdl.handle.net/10356/99110 http://hdl.handle.net/10220/13021 10.4049/jimmunol.1201171 en The journal of immunology |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences |
spellingShingle |
DRNTU::Science::Biological sciences Ruedl, Christiane Piva, L. Tetlak, P. Claser, C. Karjalainen, K. Renia, L. Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria |
description |
Plasmodium infections trigger strong innate and acquired immune responses, which can lead to severe complications, including the most feared and often fatal cerebral malaria (CM). To begin to dissect the roles of different dendritic cell (DC) subsets in Plasmodium-induced pathology, we have generated a transgenic strain, Clec9A-diphtheria toxin receptor that allows us to ablate in vivo Clec9A+ DCs. Specifically, we have analyzed the in vivo contribution of this DC subset in an experimental CM model using Plasmodium berghei, and we provide strong evidence that the absence of this DC subset resulted in complete resistance to experimental CM. This was accompanied with dramatic reduction of brain CD8 + T cells, and those few cerebral CD8 + T cells present had a less activated phenotype, unlike their wildtype counterparts that expressed IFN-γ and especially granzyme B. This almost complete absence of local cellular responses was also associated with reduced parasite load in the brain. |
author2 |
School of Biological Sciences |
author_facet |
School of Biological Sciences Ruedl, Christiane Piva, L. Tetlak, P. Claser, C. Karjalainen, K. Renia, L. |
format |
Article |
author |
Ruedl, Christiane Piva, L. Tetlak, P. Claser, C. Karjalainen, K. Renia, L. |
author_sort |
Ruedl, Christiane |
title |
Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria |
title_short |
Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria |
title_full |
Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria |
title_fullStr |
Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria |
title_full_unstemmed |
Cutting edge : Clec9A+ dendritic cells mediate the development of experimental cerebral Malaria |
title_sort |
cutting edge : clec9a+ dendritic cells mediate the development of experimental cerebral malaria |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/99110 http://hdl.handle.net/10220/13021 |
_version_ |
1681043870696079360 |