A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system

In this paper, we present a meta-cognitive sequential learning algorithm for a neuro-fuzzy inference system, referred to as, ‘Meta-Cognitive Neuro-Fuzzy Inference System’ (McFIS). McFIS has two components, viz., a cognitive component and a meta-cognitive component. The cognitive component employed i...

Full description

Saved in:
Bibliographic Details
Main Authors: Suresh, Sundaram, Subramanian, K.
Other Authors: School of Computer Engineering
Format: Article
Language:English
Published: 2013
Online Access:https://hdl.handle.net/10356/99120
http://hdl.handle.net/10220/12556
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper, we present a meta-cognitive sequential learning algorithm for a neuro-fuzzy inference system, referred to as, ‘Meta-Cognitive Neuro-Fuzzy Inference System’ (McFIS). McFIS has two components, viz., a cognitive component and a meta-cognitive component. The cognitive component employed is a Takagi–Sugeno–Kang type-0 neuro-fuzzy inference system. A self-regulatory learning mechanism that controls the learning process of the cognitive component, by deciding what-to-learn, when-to-learn and how-to-learn from sequential training data, forms the meta-cognitive component. McFIS realizes the above decision by employing sample deletion, sample reserve and sample learning strategy, respectively. The meta-cognitive component use the instantaneous error of the sample and spherical potential of the rule antecedents to select the best training strategy for the current sample. Also, in sample learning strategy, when a new rule is added the rule consequent is assigned such that the localization property of Gaussian rule is fully exploited. The performance of McFIS is evaluated on four regression and eight classification problems. The performance comparison shows the superior generalization performance of McFIS compared to existing algorithms.