Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties
An understanding of the reaction mechanisms of ethylenediaminetetraacetic acid (EDTA) and diethanolamine (DEA) for producing solution-derived (K, Na)NbO3 (KNN) thin films with outstanding piezoelectric properties and low leakage current is developed. X-ray photoelectron spectroscopy (XPS), Fourier t...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99125 http://hdl.handle.net/10220/17225 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-99125 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-991252020-06-01T10:21:23Z Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties Goh, Phoi Chin Yao, Kui Chen, Zhong School of Materials Science & Engineering DRNTU::Science::Chemistry::Physical chemistry An understanding of the reaction mechanisms of ethylenediaminetetraacetic acid (EDTA) and diethanolamine (DEA) for producing solution-derived (K, Na)NbO3 (KNN) thin films with outstanding piezoelectric properties and low leakage current is developed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR) were used to analyze the interactions among EDTA, DEA, and metal cations in both precursor solutions and amorphous films. XPS analyses showed that the oxidation states of potassium, niobium, and oxygen in KNN amorphous film were enhanced with addition of EDTA and DEA in the precursor solution, which shifted closer to the oxidation states in the perovskite phase of the resulting KNN oxide film. FTIR analyses indicated that EDTA and DEA formed dative bonds with the nonhydrated potassium and sodium acetate after pyrolysis process at 330 °C while NMR analyses showed that such interactions could have occurred in the precursor solution. NMR analyses also indicated that DEA could have chelated niobium precursor. It is proposed that EDTA and DEA acted as a “bridge” that linked the metal precursors in the solution, which is critical to suppressing the volatilization of the metal cations, for achieving the reported outstanding electrical properties of the resulting KNN films. 2013-11-01T07:10:16Z 2019-12-06T20:03:38Z 2013-11-01T07:10:16Z 2019-12-06T20:03:38Z 2012 2012 Journal Article Goh, P. C., Yao, K., & Chen, Z. (2012). Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties. The Journal of Physical Chemistry C, 116(29), 15550-15556. https://hdl.handle.net/10356/99125 http://hdl.handle.net/10220/17225 10.1021/jp301067g en The journal of physical chemistry C |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Chemistry::Physical chemistry |
spellingShingle |
DRNTU::Science::Chemistry::Physical chemistry Goh, Phoi Chin Yao, Kui Chen, Zhong Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties |
description |
An understanding of the reaction mechanisms of ethylenediaminetetraacetic acid (EDTA) and diethanolamine (DEA) for producing solution-derived (K, Na)NbO3 (KNN) thin films with outstanding piezoelectric properties and low leakage current is developed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR) were used to analyze the interactions among EDTA, DEA, and metal cations in both precursor solutions and amorphous films. XPS analyses showed that the oxidation states of potassium, niobium, and oxygen in KNN amorphous film were enhanced with addition of EDTA and DEA in the precursor solution, which shifted closer to the oxidation states in the perovskite phase of the resulting KNN oxide film. FTIR analyses indicated that EDTA and DEA formed dative bonds with the nonhydrated potassium and sodium acetate after pyrolysis process at 330 °C while NMR analyses showed that such interactions could have occurred in the precursor solution. NMR analyses also indicated that DEA could have chelated niobium precursor. It is proposed that EDTA and DEA acted as a “bridge” that linked the metal precursors in the solution, which is critical to suppressing the volatilization of the metal cations, for achieving the reported outstanding electrical properties of the resulting KNN films. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Goh, Phoi Chin Yao, Kui Chen, Zhong |
format |
Article |
author |
Goh, Phoi Chin Yao, Kui Chen, Zhong |
author_sort |
Goh, Phoi Chin |
title |
Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties |
title_short |
Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties |
title_full |
Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties |
title_fullStr |
Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties |
title_full_unstemmed |
Reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3 thin films with outstanding piezoelectric properties |
title_sort |
reaction mechanisms of ethylenediaminetetraacetic acid and diethanolamine in the precursor solution for producing (k, na)nbo3 thin films with outstanding piezoelectric properties |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/99125 http://hdl.handle.net/10220/17225 |
_version_ |
1681059668002078720 |